

1 Enhancement of Secondary Organic Aerosol Formation and its

2 Oxidation State by SO₂ during Photooxidation of 2-Methoxyphenol

- 3 Changgeng Liu^{1,2,a}, Tianzeng Chen^{1,4,a}, Yongchun Liu^{1,4,5,*}, Jun Liu^{1,4}, Hong He^{1,3,4,*},
- 4 Peng Zhang^{1,4}
- 5 ¹State Key Joint Laboratory of Environment Simulation and Pollution Control,
- 6 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
- 7 Beijing 100085, China
- 8 ²School of Biological and Chemical Engineering, Panzhihua University, Panzhihua
- 9 617000, China
- 10 ³Center for Excellence in Regional Atmospheric Environment, Institute of Urban
- 11 Environment, Chinese Academy of Sciences, Xiamen 361021, China
- 12 ⁴University of Chinese Academy of Sciences, Beijing 100049, China
- 13 ⁵Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing
- 14 University of Chemical Technology, Beijing 100029, China
- 15 ^aThese authors contributed equally to this work and should be considered as co-first
- 16 authors
- 17 Correspondence to: Yongchun Liu (liuyc@buct.edu.cn) and Hong He
- 18 (honghe@rcees.ac.cn)

19	Abstract. 2-Methoxyphenol (guaiacol) is derived from the lignin pyrolysis and taken
20	as a potential tracer for wood smoke emissions. In this work, the effect of SO_2 at
21	atmospheric levels (0-56 ppb) on secondary organic aerosol (SOA) formation and its
22	oxidation state during guaiacol photooxidation was investigated in the presence of
23	various inorganic seed particles (NaCl and $(NH_4)_2SO_4$). Without SO_2 and seed particles,
24	SOA yields (9.46-26.37%) obtained at different guaiacol concentration
25	(138.83–2197.36 $\mu g\ m^{\text{-}3})$ could be well expressed by a one-product model. The
26	presence of SO ₂ resulted in enhancing SOA yield by 14.05–23.66%. With $(NH_4)_2SO_4$
27	and NaCl seed particles, SOA yield was enhanced by 23.06% and 29.57%, respectively,
28	which further increased significantly to $29.78-53.47\%$ in the presence of SO ₂ ,
29	suggesting that SO_2 and seed particles have a synergetic contribution to SOA formation.
30	It should be noted that SO_2 was found to be in favor of increasing the carbon oxidation
31	state (OS _c) of SOA, indicating that the functionalization reaction should be more
32	dominant than oligomerization reaction. In addition, the average N/C ratio of SOA was
33	0.037, which revealed that NO_x participated in the photooxidation process,
34	consequently leading to the formation of organic nitrates. The experimental results
35	demonstrate the importance of SO_2 on the formation processes of SOA and
36	organosulfates, and also are helpful to further understand SOA formation from the
37	atmospheric photooxidation of guaiacol and its subsequent impacts on air quality and
38	climate.

39 1 Introduction

40	Biomass burning is considered as one of the major sources of gas and particulate
41	pollutants in the atmosphere (Lauraguais et al., 2014b; Yang et al., 2016). Therefore, it
42	has significant adverse impacts on regional and global air quality (Bari and Kindzierski,
43	2016; Lelieveld et al., 2001), climate (Chen and Bond, 2010), and human health
44	(Naeher et al., 2007). The chemical species emitted by biomass burning is mainly
45	dependent on fuel source and combustion conditions (O'Neill et al., 2014). Natural
46	wood is composed of cellulose (40–50 wt.%), hemicelluloses (25–35 wt.%), and lignin
47	(18-35 wt.%) (Nolte et al., 2001). During the burning process, lignin pyrolysis could
48	result in the formation of methoxyphenols, mainly including guaiacol (2-
49	methoxyphenol), syringol (2,6-dimethoxyphenol), and their derivatives (Nolte et al.,
50	2001; Schauer et al., 2001). Due to the high emission rate of methoxyphenols
51	(900-4200 mg (kg of fuel) ⁻¹), methoxyphenols are considered as the potential tracers
52	for wood burning (Hawthorne et al., 1989, 1992; Simoneit et al., 1993).

As a representative type of methoxyphenols, guaiacol mainly exists in the gas phase and is widely found in the atmosphere (Schauer et al., 2001). Its emission factor of wood burning is in the range of 172–279 mg kg⁻¹ fuel (Schauer et al., 2001). In recent years, the reactivity of gas-phase guaiacol toward OH radicals (Coeur-Tourneur et al., 2010a), NO₃ radicals (Lauraguais et al., 2016; Yang et al., 2016), chlorine atom (Lauraguais et al., 2014a), and O₃ (El Zein et al., 2015) has been investigated, suggesting that its degradation by OH radicals and NO₃ radicals might be predominant

60	in the atmosphere. Meanwhile, several studies have reported the significant SOA
61	formation from guaiacol oxidation by OH radicals (Ahmad et al., 2017; Lauraguais et
62	al., 2014b; Ofner et al., 2011; Sun et al., 2010; Yee et al., 2013). However, SOA
63	formation from the photooxidation of guaiacol in the presence of $\ensuremath{\text{NO}}_x$ has not been
64	determined yet, even though it has been recently reported that the atmospheric level of
65	NO_x could reach up to close 200 ppb in the severely polluted climate in China (Li et al.,
66	2017).

67	Although many studies concentrated on the SOA production from the oxidation of
68	volatile organic compounds (VOCs), the reported SOA yields showed high variability
69	for a given precursor (Chu et al., 2016, 2017; Ge et al., 2017a; Lauraguais et al., 2012,
70	2014b; Ng et al., 2007; Sarrafzadeh et al., 2016; Yee et al., 2013). This variability is
71	mainly dependent on the numerous factors, e.g., pre-existing seed particles, SO ₂ level,
72	NO _x level, humidity, and temperature. Two of the critical factors are the impacts of pre-
73	existing seed particles and SO ₂ level on SOA formation (Chu et al., 2016, 2017; Ge et
74	al., 2017a). In addition, the atmospheric concentration of SO_2 could be up to close 200
75	ppb in the severely polluted atmosphere in China, and SOA from biomass burning and
76	sulfate formation could significantly contribute to severe haze pollution (Li et al., 2017).
77	During the transport process, smoke plumes from biomass burning would be inevitably
78	mixed with suspended particles (e.g., $(NH_4)_2SO_4$ particles), SO_2 , and NO_x in the
79	atmosphere. However, the influences of these co-existed pollutants on the
80	transformation of guaiacol and its SOA formation are still unclear. For these reasons,

81 the aim of this work was to investigate the SOA formation from guaiacol 82 photooxidation in the presence of NO_x in a 30 m³ indoor smog chamber, as well as the 83 effect of SO₂ on SOA fromation with various inorganic seed particles.

84 2 Experimental section

85 The photooxidation experiments were performed in a 30 m³ indoor smog chamber (4 m (high) \times 2.5 m (wide) \times 3 m (length)), which was built in a temperature-controlled 86 87 room located at the Research Center for Eco-Environment Sciences, Chinese Academy 88 of Sciences (RCEES-CAS). Its schematic structure is shown in Fig. S1. Briefly, 120 89 UV lamps (365 nm, Philips TL 60/10R) were taken as the light source with a NO_2 90 photolysis rate of 0.55 min^{-1} , which is comparable to the irradiation intensity at noon in 91 Beijing (Chou et al., 2011). A maglev fan installed at the bottom center of the smog 92 chamber was used to mix sufficiently the introduced gas species and seed particles. 93 Temperature and relatively humidity (RH) in the chamber were (302 \pm 1) K and (39 \pm 94 1)%, respectively. Before each experiment, the chamber would be flushed by purified dry zero air for ~36 h with a flow rate of 100 L min⁻¹ until the particle number 95 concentration in the chamber was lower than 20 cm⁻³. 96

Gas-phase guaiacol was firstly introduced into the chamber by purified dry zero air
flowing through the gently heated injector with a known volume of pure liquid guaiacol
until guaiacol fully vaporized. Its concentration in the chamber was online monitored
by a proton-transfer reaction time-of-flight mass spectrometer (PTR-QiToF-MS)
(Ionicon Analytik GmbH), and was calibrated by a commercial permeation tube (VICI

102	AG INTERNATIONAL Valco Instruments Co., Inc.). When guaiacol concentration
103	was stable, NO and SO_2 were introduced into the chamber by a gas controller using
104	purified dry zero air as the carrier gas. Their concentrations were controlled by the
105	injection time preset through the electromagnetic valve, and were measured by a $\ensuremath{\mathrm{NO}}_x$
106	analyzer (Model 42i-TL, Thermo Fisher Scientific, Inc.) and a SO ₂ analyzer (Model 43i,
107	Thermo Fisher Scientific Inc.), respectively. In this work, the initial ratio (V/V) of
108	guaiacol concentration to NO_x concentration in the chamber was similar in all
109	experiments (~1.2) (Tables 1 and 2). In addition, sodium chloride (NaCl) and
110	ammonium sulfate ((NH_4) ₂ SO ₄) were used as the inorganic seeds. The seed aerosols in
111	the chamber were generated by the atomization of a 0.02 M aqueous solution. Through
112	atomization, the size distribution of seed particles peaked at 51-58 nm with a number
113	concentration of 10100–11400 cm ⁻³ was achieved (Table 2). After gas species and seed
114	particles in the chamber were mixed well, the photooxidation experiment was carried
115	out with the fan turned off. In this work, the OH concentrations in the chamber were
116	$(1.3-2.2) \times 10^{6}$ molecules cm ⁻³ , calculated based on the degradation rate $(7.53 \times 10^{-11}$
117	cm ³ molecule ⁻¹ s ⁻¹) of guaiacol with OH radicals (Coeur-Tourneur et al., 2010a). The
118	chemicals and gas samples used in this work were described in Supporting Information.
119	An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-
120	AMS) was applied to online measure the chemical composition of particles and the non-
121	refractory submicron aerosol mass (DeCarlo et al., 2006). The size distribution and
122	concentration of particles were monitored by a scanning mobility particle sizer (SMPS),

123	which is composed of a differential mobility analyzer (DMA) (Model 3082, TSI Inc.)
124	and a condensation particle counter (CPC) (Model 3776, TSI Inc.). Assuming that
125	particles are spherical and non-porous, the average particle density could be calculated
126	to be 1.4 g cm ⁻³ using the equation $\rho = d_{va}/d_m$ (DeCarlo et al., 2004), where d_{va} is the
127	mean vacuum aerodynamic diameter measured by HR-ToF-AMS and $d_{\rm m}$ is the mean
128	volume-weighted mobility diameter measured by SMPS. The mass concentration of
129	particles measured by HR-ToF-AMS was corrected by SMPS data in this work using
130	the same method as Gordon et al. (2014). In this work, the wall loss rate (k_{dep}) of
131	$(NH_4)_2SO_4$ particles could be expressed as $k_{dep} = 4.15 \times 10^{-7} \times D_p^{-1.89} + 1.39 \times D_p^{-0.88}$
132	$(D_{\rm p} \text{ is the particle diameter (nm)})$, which was measured according to the literature
133	method (Takekawa et al., 2003) and used to correct the wall loss of SOA. In addition,
134	its wall loss rate was determined at predetermined time intervals, which only had a
135	slight change among different experiments.
120	2 Degulte and discussion

- 1363Results and discussion
- 137 3.1 SOA yields

A series of experiments were conducted at different guaiacol/NO_x concentrations under atmospheric pressure. The experimental conditions and results are shown in Table 1. SOA yield was calculated to be the ratio of SOA mass concentration (M_0 , µg m⁻³) to the consumed guaiacol concentration (Δ [guaiacol], µg m⁻³) at the end of each experiment (Kang et al., 2007). The results showed that SOA yield was dependent on the initial guaiacol concentration. Higher precursor concentration would result in higher amount

- 144 of condensable products, subsequently enhancing SOA formation (Lauraguais et al.,
- 145 2012). In addition, it should be noted that SOA mass could directly affect the
- 146 gas/particle partitioning via acting as the adsorption medium of oxidation products, thus
- 147 higher SOA mass generally leads to higher SOA yield (Lauraguais et al., 2014b).

148 SOA yield (Y) could be represented by a widely-used semi-empirical model based

on the absorptive gas-particle partitioning of semi-volatile products, typicallycalculated using the following equation (Odum et al., 1996):

151
$$\mathbf{Y} = \sum_{i} \mathbf{M}_{0} \frac{\alpha_{i} \mathbf{K}_{\mathrm{om},i}}{1 + \mathbf{K}_{\mathrm{om},i} \mathbf{M}_{0}}$$
(1)

where α_i is the mass-based stoichiometric coefficient for the reaction producing the semi-volatile product i, K_{om,i} is the gas-particle partitioning equilibrium constant, and M₀ is the total aerosol mass concentration.

155 The yield curve for guaiacol photooxidation is shown in Fig. 1, obtained by plotting 156 the SOA yield data in Table 1 according to Eq. (1). The yield data were accurately 157 reproduced by a one-product model ($R^2 = 0.97$), while two or more products used in the 158 model did not significantly improve the fitting quality. The obtained values of α_i and 159 $K_{om,i}$ for one-product model were (0.27 ±0.01) and (0.033 ±0.008) m³ µg⁻¹, respectively. 160 In previous studies, the one-product model was widely applied to describe SOA yields 161 from the oxidation of aromatic compounds including methoxyphenols (Coeur-Tourneur 162 et al., 2010b; Lauraguais et al., 2012, 2014b). In this work, this simulation suggests that 163 the products in SOA have similar values of α_i and $K_{om,i}$, i.e., the obtained α_i and $K_{om,i}$ 164 are the average vaules. The plot shown in Fig. S2 is the relationship between M_0 versus

165	Δ [guaiacol], of which slope (0.28) is slightly higher than α_i value (0.27). This suggests
166	that the formed low-volatile products almost completely paritioned on the particle-
167	phase according to the theoretical partition model (Lauraguais et al., 2012, 2014b).
168	In the previous studies, the significant SOA formation from the OH-initiated
169	reaction of guaiacol has been reported (Lauraguais et al., 2014b; Sun et al., 2010; Yee
170	et al., 2013). In this work, SOA yields for guaiacol photooxidation range from
171	9.46-26.37%, shown in Table 1. This range overlaps SOA yields of 0.6-87% for
172	guaiacol oxidation under high NO _x condition (~10 ppm NO), reported by Lauraguais et
173	al. (2014b), using CH ₃ ONO as the OH source. Under low NO _x conditions (<5 ppb NO),
174	SOA yields for guaiacol oxidation were in the range of 44–50%, reported by Yee et al.
175	(2013) using H_2O_2 as the OH source and $(NH_4)_2SO_4$ as seed particles; they also
176	indicated that high NO _x concentration (>200 ppb NO) played an opposite role in SOA
177	formation. Compared to the reported results, SOA yields obtained in this work were
178	lower, which might be explained by the different experimental conditions, e.g., OH
179	concentrations and seed particles. For example, Sun et al. (2010) have reported that
180	SOA mass formed from the aqueous-phase photochemical reaction of guaiacol in the
181	presence of H_2O_2 is about one-fold higher than that in the absence of H_2O_2 .
182	In addition, the average N/C ratio of SOA for guaiacol photooxidation in the
183	presence of NO _x is 0.037, calculated according to the element analysis by HR-ToF-

- 184 AMS. This indicates that NO_x incorporates in guaiacol photooxidation. This
- 185 phenomenon is well supported by the previous results, which reported that the nitro-

186	substituted products are the main products of the OH-initiated reaction of guaiacol in
187	the presence of NO_x (Ahmad et al., 2017; Lauraguais et al., 2014b). The relative low
188	volatility of these products could reasonably contribute to SOA formation (Duport éet
189	al., 2016; Liu et al., 2016a). The average $\mathrm{NO^{+}/NO_{2}^{+}}$ ratio of SOA from guaiacol
190	photooxidation is 4.08, which is within the range of 3.82–5.84 for organic nitrates of
191	SOA from the photooxidation of aromatics (Sato et al., 2010). In this work, the
192	measured $\text{NO}^+/\text{NO}_2^+$ ratios for inorganic nitrates are in the range of 2.06 to 2.54,
193	determined by HR-ToF-AMS using ammonium nitrate as calibration sample. The
194	relative abundance of organic nitrates could be estimated from the average N/C ratio.
195	Assuming that the oxidation products in the SOA retain 7 carbon atoms, the yield of
196	organic nitrates is 25.9%, which is the upper limit due to the possible $C-C$ bond
197	scission during photooxidation process.

198 **3.2 Effect of SO₂ on SOA formation**

199 In China, atmospheric SO₂ concentration is always in the range of several to dozens of 200 ppb, while in the severely polluted atmosphere it could be up to close 200 ppb (Han et 201 al., 2015; Li et al., 2017). In addition, a recent field measurement study has reported 202 that the decrease of biogenic SOA mass concentration in the atmosphere has a postive 203 correlation with SO₂ emission controls (Marais et al., 2017). Therefore, the effect of 204 SO₂ at atmospheric levels on SOA formation from guaiacol photooxidation under 205 atmospheric NO_x conditions was investigated. The experimental conditions and results 206 are shown in Table 2. The formation of SOA, sulfate, and nitrate as a function of SO2

207	concentration for guaiacol photooxidation is shown in Fig. S3. As illustrated in Fig. 2,
208	M_0 for the blank experiment (Expt. 1 in Table 2) increased from 63.62 to 71.88 and
209	78.59 μg m $^{\text{-3}}$, enhanced by 12.98% and 23.53%, respectively, when SO_2 concentration
210	raised from 0 to 33 and 56 ppb. The corresponding SOA yield increased by 14.05% and
211	23.66%, respectively. The similar results were reported by previous studies (Kleindienst
212	et al., 2006; Lin et al., 2013; Liu et al., 2016b), which observed the significant
213	enhancements of SOA yields for VOCs oxidation and the photochemical aging of
214	gasoline vehicle exhaust in the presence of SO ₂ .
215	The average carbon oxidation state (OS _C = $2O/C - H/C$) of OA is widely used to
216	represent the oxidation degree of atmospheric OA, because it takes into account the
217	saturation level of carbon atoms in the OA (Kroll et al., 2011). As shown in Table 2,
218	increasing SO ₂ concentration (0–56 ppb) leads to the increase of OS _C (0.11–0.18). In
219	order to further identify the effect of SO ₂ on the chemical properties of SOA, positive
220	matrix factorization (PMF) analysis for the AMS data obtained at different SO_2
221	concentrations was carried out. Two factors were obtained from the PMF analysis, and
222	their mass spectra are shown in Fig. 3. The organic mass fraction of m/z 44 (CO ₂ ⁺),
223	named f_{44} , was 0.122 for Factor 2, which is higher than that (0.094) for Factor 1.
224	Therefore, Factor 2 was tentatively assigned to the more-oxidized SOA, while Factor 1
225	was the less-oxidized SOA (Ulbrich et al., 2009). During the photooxidation process,
226	these two factors had different variations as a function of reaction time. As shown in
227	Fig. S4, Factor 1 decreased along with the reaction, while Factor 2 had an opposite

228	trend. Compared to Expts. 1 and 2 in Table 2, the higher fraction of Factor 2 mass
229	obtained at 56 ppb SO_2 (Expt. 3 in Table 2) suggests that the formed SOA mainly
230	consists of more-oxidized products with relatively low volatility, which is well
231	supported by the obtained OS_C of SOA.

232 Previous studies mostly reported that the enhancement of SOA yield in the presence 233 of SO₂ was ascribed to the functionalization and oligomerization reactions (Cao and Jang, 2007; Jaoui et al., 2008; Liu et al., 2016b; Xu et al., 2016). If the oligomerization 234 235 reaction plays a predominant role in the presence of SO_2 which will lead to particle 236 phase H_2SO_4 , the oxidation state of SOA will decrease. Nevertheless, we observed that 237 SO_2 not only enhanced SOA yields, but also resulted in higher OS_C (Table 2 and Fig. 238 4). This suggests that the functionalization reaction should be predominant with SO₂, 239 which leads to higher OS_C of products with low molecular weight (MW) (Ye et al., 240 2018), consequently resulting in an overall increase in OS_C and SOA yields. More 241 recently, Ye et al. (2018) also found the similar results in the ozonolysis of limonene. 242 Fig. S5 shows the differences among the normalized mass spectra of SOA formed at 243 different SO₂ concentrations. As shown in Fig. S5a, the signal fractions from the low-244 MW species are enhanced significantly in the presence of SO₂, and are much higher 245 than those from the high-MW species (m/z >300). The similar results are also observed 246 in Fig. S5b when increasing SO₂ concentration. In other words, SO₂ played a more 247 important role in the formation of organosulfate and the formation or uptake of low-248 WM species, compared to the formation of high-MW species (i.e., oligomerics). In this

249	work, organosulfate concentration increased with the increase of SO_2 concentration,
250	and was in the range of $2.1-4.3$ ng m ⁻³ , calculated using the method described by Huang
251	et al. (2015). This concentration range is close to those derived from the atmospheric
252	oxidation of polycyclic aromatic hydrocarbons and alkane (Riva et al., 2015; Meade et
253	al., 2016). Fig. S6 is the examples of the ions (i.e., CSO^+ , $CH_3SO_2^+$, and $CH_3SO_3^+$)
254	in the calibration of methyl sulfate obtained at 56 ppb SO ₂ . On the other hand, sulfuric
255	acid formed from SO_2 may be favorable of the uptake of water-soluble low-MW species
256	(e.g., small carboxylic acids and aldehydes), which also results in the increase of OS_C .
257	In addition, Krapf et al. (2016) have indicated that peroxides in SOA are unstable and
258	liable to decompose into volatile compounds, consequently leading to decrease SOA
259	yield and OS_C . But, Ye et al. (2018) recently found that the reactions of SO_2 with organic
260	peroxides were the dominant sink of SO_2 , initiated by the heterogeneous uptake of SO_2
261	under humidity condition. These reactions would result in the formation of
262	organosulfates, consequently increasing SOA yields and OS _C .
263	In addition, it has been reported that the formed sulfate by SO_2 oxidation not only
264	serves as the substrate for the condensation of low-volatility vapors (Jaoui et al., 2008),

but also increases the surface areas of particles (Xu et al., 2016). These roles of sulfate are also favorable for increasing SOA yields. In the presence of SO₂, however, we did not observe the particle mode attributed to H_2SO_4 formed from SO₂ oxidation. Therefore, we calculated the surface area concentration of aerosol particles at the end time. As shown in Table 2, the final surface area of aerosol particles formed via guaiacol

270	photooxidation increased from 1.25 $\times 10^3$ to 1.68 $\times 10^3$ and 2.04 $\times 10^3~\mu m^2~cm^{\text{-}3}$ when
271	SO_2 concentration increased from 0 to 33 and 56 ppb. The increased surface area could
272	be in favor of outcompeting the wall loss for low-volatility vapors produced from
273	guaiacol photooxidation, i.e., more low-volatility vapors will be diverted from wall loss
274	to the particles, consequently increasing SOA yields (Kroll et al., 2007). But, the surface
275	area of aerosol particles is still much lower than that (1.97 $\times 10^6~\mu m^2~cm^{\text{-3}})$ of smog
276	chamber used in this work. Therefore, the enhancement of SOA yields by the increased
277	surface area from H ₂ SO ₄ by SO ₂ oxidation might be limited.

278 **3.3** Effect of inorganic seed particles on SOA formation

279 Seed particle is one of the critical factors influencing SOA formation (Ge et al., 2017a), 280 thus the effects of inorganic seeds (NaCl and (NH₄)₂SO₄) on SOA formation from 281 guaiacol photooxidation were investigated. As shown in Fig. 5, the presence of 282 inorganic seed particles could accelerate SOA growth rate at the initial stage of 283 photooxidation, followed by the decrease of growth rate along with the reaction, 284 because the presence of inorganic seeds could promote the condensation of SOA-285 forming organic products and consequently increase SOA formation (Yee et al., 2013). The results showed that M₀ for the blank experiment (Expt. 1 in Table 2) increased from 286 63.62 to 79.44 and 84.91 $\mu g\ m^{-3}$ (Table 2), enhanced by 24.87% and 33.46%, 287 288 respectively, with (NH₄)₂SO₄ and NaCl seed particles. The corresponding SOA yield increased by 23.06% and 29.57%, respectively. In previous work, the similar results 289 290 about the enhancements of SOA formation by NaCl and (NH₄)₂SO₄ seed particles were

291	reported in the oxidation of VOCs (Ge et al., 2017a, 2017b; Huang et al., 2013, 2017).
292	As shown in Table 2 and Fig. 5, the SOA mass concentration in the presence of
293	NaCl seed particles is higher than that in the presence of $(NH_4)_2SO_4$ seed particles. In
294	addition, OS_C of SOA in the presence of NaCl seed particles is 0.29, slightly higher
295	than that (0.20) in the presence of $(NH_4)_2SO_4$ seed particles. Recently, it has been also
296	reported that the presence of $(NH_4)_2SO_4$ and $NaNO_3$ seed particles could enhance
297	significantly the oxidation state of SOA, compared to without seed particles (Huang et
298	al., 2016). In this work, the experimental conditions for seed experiments are almost
299	the same (Table 2), including reactant concentration, temperature, RH, and the number
300	and diameter of seed particles. Therefore, the differences in the yield and oxidation state
301	of SOA were reasonably resulted from the different chemical compositions of SOA with
302	different inorganic seeds. Fig. 6 shows the mass spectra of SOA in the presence of NaCl
303	and (NH ₄) ₂ SO ₄ seed particles obtained by HR-ToF-AMS, as well as their difference
304	mass spectrum. As shown in Fig. 6, f_{44} and the organic mass fraction of m/z 28 (CO ⁺)
305	for SOA in the presence of NaCl seed particles are both higher than those in the presence
306	of $(NH_4)_2SO_4$ seed particles, while the mass fractions of CH_3 and CHO fragments are
307	both lower. The m/z 44 ion (CO_2^+) is mainly contributed from acids or acid-derived
308	species, such as esters (Ng et al., 2011). The higher f_{44} of SOA with NaCl than
309	(NH ₄) ₂ SO ₄ seed particles suggests that the distribution of highly oxidized small
310	carboxylic acids onto seed particles plays an important role in SOA formation,
311	consequently resulting in higher oxidation state of SOA (Ng et al., 2011; Huang et al.,

312	2016). Compared to $(NH_4)_2SO_4$, the hygroscopicity of NaCl is stronger (Ge et al., 2017a;
313	Gysel et al., 2002). The molar ratio of H_2O to NaCl is about 0.1 at 40% RH, and water
314	is mainly adsorbed on NaCl particles (Weis and Ewing, 1999). Thus, the greater water
315	content on the particle surface could facilitate the uptake of highly oxidized small
316	carboxylic acids onto NaCl particles, which might be potentially explain the higher
317	SOA oxidation state observed in the presence of NaCl seed particles (Huang et al.,
318	2016). The adsorbed acid products would also generate H^+ ions, which could catalyze
319	heterogeneous reactions to produce more-oxidized products or oligomerics with
320	relatively low volatility (Fig. S7), consequently resulting in the enhancement of SOA
321	formation (Huang et al., 2013, 2017; Cao and Jang, 2007; Jaoui et al., 2008; Liu et al.,
322	2016b; Xu et al., 2016).

323 In addition, the possible formation of Cl atoms from the photolysis of nitryl chloride (CINO₂ \xrightarrow{hv} Cl + NO₂, $k_1 = \sim 10^{-4} \text{ s}^{-1}$) (Mielke et al., 2011) and the reaction 324 of OH radical with Cl^- ($Cl^- + OH \rightarrow Cl + OH^-$, $k_2 = \sim 10^9 \text{ M}^{-1} \text{ s}^{-1}$) (Fang et al., 2014) 325 326 would also initiate a series of reactions to oxidize SOA composition, which might be 327 another reason for higher OS_C observed with NaCl seed particles. According to the rate constant (10⁹ M⁻¹ s⁻¹) (Fang et al., 2014), the uptake coefficient (3.4 \times 10⁻³) of OH 328 329 radicals on NaCl particles (Park et al., 2008), and the concentrations of OH radicals and 330 Cl⁻, the concentration of Cl atoms from the reaction of OH radical with Cl⁻ was 331 estimated to be less than 38 molecules cm⁻³, which was much higher than that from the photolysis of CINO₂ due to the slow photolysis rate constant of $\sim 10^{-4}$ s⁻¹ (Mielke et 332

- al., 2011). Compared to OH concentration in the chamber, the oxidation of SOA
- 334 composition by Cl atoms should be insignificant.

335 3.4 Synergetic effect of SO₂ and inoragnic seed particles on SOA formation

336 According to the former results obtained in this work, it is clearly known that SO₂ and 337 inorganic seed particles both have a positive role in enhancing SOA formation. 338 Therefore, their possible synergetic effects on SOA formation were investigated. In view of the experiments performed under the comparable conditions (Table 2), the 339 results should be reasonably reliable. As shown in Fig. 7, the addition of SO_2 into the 340 341 chamber in the presence of inorganic seed particles significantly promotes SOA 342 formation from guaiacol photooxidation. When SO₂ concentration raised from 0 to 30 343 and 54 ppb in the presence of NaCl seed particles, M₀ was enhanced by 42.86% and 344 55.39%, respectively, and the corresponding SOA yield increased by 41.43% and 345 53.47%, compared to the blank experiment (Expt. 1 in Table 2). For (NH₄)₂SO₄ seed 346 particles, M₀ was enhanced by 32.58% for 33 ppb SO₂ and 41.34% for 54 ppb SO₂, 347 respectively, and the corresponding SOA yield increased by 29.78% and 39.24%. 348 Therefore, inorganic seed particles and SO₂ have a synergestic effect on SOA formation. 349 As shown in Table 2 and Fig. 4, it should be noted that OS_C of SOA increases in 350 the presence of SO₂. Fig. S8 shows the mass spectra of SOA with NaCl and (NH₄)₂SO₄ 351 as seed particles at different SO₂ concentrations obtained by HR-ToF-AMS. As 352 illustrated in Fig. S8, SO₂ addition is in favor of increasing the value of f_{44} , suggesting 353 that more products with higher OS_C are produced by the functionalization reaction (Ye

354	et al., 2018). Meanwhile, Table 2 shows that the final surface area of aerosol particles
355	increased in the presence of SO ₂ , which played a positive role in diverting more low-
356	volatility vapors from wall loss to the particles, consequently enhancing SOA yields
357	(Kroll et al., 2007). But, this impact should be insignificant due to the much lower
358	surface area of aerosol particles compared to that (1.97 $\times10^6~\mu m^2~cm^{\text{-3}})$ of smog
359	chamber in this work. In addition, the presence of inorganic seeds could promote the
360	condensation of SOA-forming organic products and the heterogeneous uptake of SO_2
361	(Yee et al., 2013), providing favorable conditions for the following oxidation reactions.
362	Meanwhile, the higher hygroscopicity of NaCl than (NH ₄) ₂ SO ₄ might be helpful to
363	dissolve more acid substances on NaCl particle surface (e.g., H ₂ SO ₄ and organic acid),
364	especially in the presence of SO ₂ , which might be helpful to catalyze heterogeneous
365	reactions (Cao and Jang, 2007; Huang et al., 2013, 2017; Jaoui et al., 2008; Liu et al.,
366	2016b; Xu et al., 2016). Figs. S9 and S10 show the differences among the normalized
367	mass spectra of SOA formed at different SO_2 concentrations with various seed particles,
368	which both shows that the signal fractions from the low-MW species are increased
369	significantly in the presence of SO ₂ , and are much higher than those from the high-MW
370	species (m/z >300). Compared to Expts. 2 and 3 in Table 2 with no seed particles,
371	organosulfate concentrations formed with seed particles were similar and in the range
372	of 2.2–4.6 ng m ⁻³ , which might be caused by the similar SO_2 concentrations applied for
373	experiments. With NaCl and $(\mathrm{NH_4})_2\mathrm{SO_4}$ as seed particles, SOA yields and OS_C both
374	also increased with the increase of SO ₂ , suggesting that the functionalization reaction

375 should be more dominant than oligomerization reaction during photooxidation process.

376 4 Conclusions and atmospheric implications

377 In this work, SOA formation from guaiacol photooxidation in the presence of NOx was 378 investigated in a 30 m³ smog chamber. SOA yields for guaiacol photooxidation were in 379 the range of 9.46-26.37% at the initial guaiacol concentrations ranging from 380 138.83-2197.36 µg m⁻³, and could be expressed well by a one-product model. The presence of SO₂ could increase SOA yield and OS_C, indicating that the functionalization 381 382 reaction should be more dominant than oligomerization reaction. Meanwhile, the 383 similar effect of SO₂ was also observed with NaCl and (NH₄)₂SO₄ seed particles. But, 384 SOA yield and OS_C in the presence of NaCl seed particles were both slightly higher 385 than those in the presence of (NH₄)₂SO₄ seed particles. In addition, the results indicated 386 the synergetic contribution of SO2 and inorganic seed particles to SOA formation. The 387 average N/C ratio (0.037) of SOA suggested that NOx participated in the process of 388 guaiacol photooxidation, resulting in the formation of organic nitrates.

The significant SOA formation from guaiacol photooxidation at the atmospheric levels of SO₂ and NO_x in this work suggests that it should pay more attenion on the SOA formation from biomass burning and its subsequent effects on haze evolution, especially in China with nationwide biomass burning, because recent studies have indicated that SOA formed from biomass burning plays an important role in haze pollution in China (Ding et al., 2017; Li et al., 2017). In addition, the results imply that the oxidation of SO₂ and VOCs should be tightly combined, and SO₂ has a direct impact

- 396 on the chemistry of SOA formation. Although guaiacol concentrations in the chamber
- 397 study are higher than those in the ambient atmosphere, the results obtained in this work
- 398 could provide new information for SOA formation from the photooxidation of
- 399 methoxyphenols, and might be useful for SOA modeling, especially for air quality
- 400 simulation modeling of the specific regions experiencing serious pollution caused by
- 401 fine particulate matter. In addition, the results would help to further understand the
- 402 photochemical aging process of smoke plumes from biomass burning in the atmosphere.

403 Data availability

404 The experimental data are available upon request to the corresponding authors.

405 **Competing interests**

406 The authors declare that they have no conflict of interest.

407 Acknowledgements

408 This work was financially supported by the National Key R&D Program of China 409 (2016YFC0202700), the National Natural Science Foundation of China (21607088), 410 China Postdoctoral Science Foundation funded project (2017M620071), and the 411 Applied Basic Research Project of Science and Technology Department of Sichuan 412 Province (2018JY0303). Liu Y. would like to thank Beijing University of Chemical 413 Technology for financial supporting. Authors would also acknowledge the 414 experimental help provided by Dr. Xiaolei Bao from Hebei Provincial Academy of 415 Environmental Sciences, Shijiazhuang, China.

416 **References**

417	Ahmad, W., Coeur, C., Tomas, A., Fagniez, T., Brubach, JB., and Cuisset, A.: Infrared
418	spectroscopy of secondary organic aerosol precursors and investigation of the
419	hygroscopicity of SOA formed from the OH reaction with guaiacol and syringol,
420	Appl. Opt., 56, E116-E122, doi: 10.1364/ao.56.00e116, 2017.
421	Bari, M. A., and Kindzierski, W. B.: Fine particulate matter (PM2.5) in Edmonton,
422	Canada: Source apportionment and potential risk for human health, Environ.
423	Pollut., 218, 219-229, doi: 10.1016/j.envpol.2016.06.014, 2016.
424	Cao, G., and Jang, M.: Effects of particle acidity and UV light on secondary organic
425	aerosol formation from oxidation of aromatics in the absence of NO _x , Atmos.
426	Environ., 41, 7603-7613, doi: 10.1016/j.atmosenv.2007.05.034, 2007.
427	Chen, Y., and Bond, T. C.: Light absorption by organic carbon from wood combustion,
428	Atmos. Chem. Phys., 10, 1773-1787, doi: 10.5194/acp-10-1773-2010, 2010.
429	Chou, C. C. K., Tsai, C. Y., Chang, C. C., Lin, P. H., Liu, S. C., and Zhu, T.:
430	Photochemical production of ozone in Beijing during the 2008 Olympic Games,
431	Atmos. Chem. Phys., 11, 9825-9837, doi: 10.5194/acp-11-9825-2011, 2011.
432	Chu, B., Zhang, X., Liu, Y., He, H., Sun, Y., Jiang, J., Li, J., and Hao, J.: Synergetic
433	formation of secondary inorganic and organic aerosol: Effect of SO ₂ and NH ₃ on
434	particle formation and growth, Atmos. Chem. Phys., 16, 14219-14230, doi:
435	10.5194/acp-16-14219-2016, 2016.
436	Chu, B., Liggio, J., Liu, Y., He, H., Takekawa, H., Li, SM., and Hao, J.: Influence of
437	metal-mediated aerosol-phase oxidation on secondary organic aerosol formation
438	from the ozonolysis and OH-oxidation of α -pinene, Sci. Rep., 7, 40311, doi:
439	10.1038/srep40311, 2017.
440	Coeur-Tourneur, C., Cassez, A., and Wenger, J. C.: Rate coefficients for the gas-phase
441	reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related
442	compounds, J. Phys. Chem. A, 114, 11645-11650, doi: 10.1021/jp1071023, 2010a.
443	Coeur-Tourneur, C., Foulon, V., and Lareal, M.: Determination of aerosol yields from
444	3-methylcatechol and 4-methylcatechol ozonolysis in a simulation chamber,
445	Atmos. Environ., 44, 852-857, doi: 10.1016/j.atmosenv.2009.11.027, 2010b.
446	DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle
447	morphology and density characterization by combined mobility and aerodynamic
448	diameter measurements. Part 1: Theory, Aerosol Sci. Technol., 38, 1185-1205, doi:
449	10.1080/027868290903907, 2004.
450	DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C.,
451	Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez,
452	J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer,
453	Anal. Chem., 78, 8281-8289, doi: 10.1021/ac061249n, 2006.
454	Ding, X., Zhang, YQ., He, QF., Yu, QQ., Wang, JQ., Shen, RQ., Song, W., Wang,
455	YS., and Wang, XM.: Significant increase of aromatics-derived secondary
456	organic aerosol during fall to winter in China, Environ. Sci. Technol., 51, 7432-

457	7441, doi: 10.1021/acs.est.6b06408, 2017.
458	Duport é, G., Parshintsev, J., Barreira, L. M. F., Hartonen, K., Kulmala, M., and
459	Riekkola, ML.: Nitrogen-containing low volatile compounds from
460	pinonaldehyde-dimethylamine reaction in the atmosphere: A laboratory and field
461	study, Environ. Sci. Technol., 50, 4693-4700, doi: 10.1021/acs.est.6b00270, 2016.
462	El Zein, A., Coeur, C., Obeid, E., Lauraguais, A., and Fagniez, T.: Reaction kinetics of
463	catechol (1,2-benzenediol) and guaiacol (2-methoxyphenol) with ozone, J. Phys.
464	Chem. A, 119, 6759-6765, doi: 10.1021/acs.jpca.5b00174, 2015.
465	Fang, J., Fu, Y., and Shang, C.: The roles of reactive species in micropollutant
466	degradation in the UV/free chlorine system, Environ. Sci. Technol., 48, 1859-1868,
467	doi: 10.1021/es4036094, 2014.
468	Ge, S., Xu, Y., and Jia, L.: Effects of inorganic seeds on secondary organic aerosol
469	formation from photochemical oxidation of acetone in a chamber, Atmos. Environ.,
470	170, 205-215, doi: 10.1016/j.atmosenv.2017.09.036, 2017a.
471	Ge, S., Xu, Y., and Jia, L.: Secondary organic aerosol formation from propylene
472	irradiations in a chamber study, Atmos. Environ., 157, 146-155, doi:
473	10.1016/j.atmosenv.2017.03.019, 2017b.
474	Gordon, T. D., Presto, A. A., Nguyen, N. T., Robertson, W. H., Na, K., Sahay, K. N.,
475	Zhang, M., Maddox, C., Rieger, P., Chattopadhyay, S., Maldonado, H., Maricq, M.
476	M., and Robinson, A. L.: Secondary organic aerosol production from diesel
477	vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle, Atmos.
478	Chem. Phys., 14, 4643-4659, doi: 10.5194/acp-14-4643-2014, 2014.
479	Gysel, M., Weingartner, E., and Baltensperger, U.: Hygroscopicity of aerosol particles
480	at low temperatures. 2. Theoretical and experimental hygroscopic properties of
481	laboratory generated aerosols, Environ. Sci. Technol., 36, 63-68, doi:
482	10.1021/es010055g, 2002.
483	Han, T., Liu, X., Zhang, Y., Qu, Y., Zeng, L., Hu, M., and Zhu, T.: Role of secondary
484	aerosols in haze formation in summer in the Megacity Beijing, J. Environ. Sci., 31,
485	51-60, doi: 10.1016/j.jes.2014.08.026, 2015.
486	Hawthorne, S. B., Krieger, M. S., Miller, D. J., and Mathiason, M. B.: Collection and
487	quantitation of methoxylated phenol tracers for atmospheric pollution from
488	residential wood stoves, Environ. Sci. Technol., 23, 470-475, doi:
489	10.1021/es00181a013, 1989.
490	Hawthorne, S. B., Miller, D. J., Langenfeld, J. J., and Krieger, M. S.: PM10 high-
491	volume collection and quantitation of semivolatile and nonvolatile phenols,
492	methoxylated phenols, alkanes, and polycyclic aromatic hydrocarbons from winter
493	urban air and their relationship to wood smoke emissions, Environ. Sci. Technol.,
494	26, 2251-2262, doi: 10.1021/es00035a026, 1992.
495	Huang, D. D., Li, Y. J., Lee, B. P., and Chan, C. K.: Analysis of organic sulfur
496	compounds in atmospheric aerosols at the HKUST supersite in Hong Kong using
497	HR-ToF-AMS, Environ. Sci. Technol., 49, 3672-3679, doi: 10.1021/es5056269,
498	2015.

499	Huang, D. D., Zhang, X., Dalleska, N. F., Lignell, H., Coggon, M. M., Chan, CM.,
500	Flagan, R. C., Seinfeld, J. H., and Chan, C. K.: A note on the effects of inorganic
501	seed aerosol on the oxidation state of secondary organic aerosol-alpha-Pinene
502	ozonolysis, J. Geophys. ResAtmos., 121, 12476-12483, doi:
503	10.1002/2016jd025999, 2016.
504	Huang, M., Hao, L., Gu, X., Hu, C., Zhao, W., Wang, Z., Fang, L., and Zhang, W.:
505	Effects of inorganic seed aerosols on the growth and chemical composition of
506	secondary organic aerosol formed from OH-initiated oxidation of toluene, J.
507	Atmos. Chem., 70, 151-164, doi: 10.1007/s10874-013-9262-9, 2013.
508	Huang, M., Hao, L., Cai, S., Gu, X., Zhang, W., Hu, C., Wang, Z., Fang, L., and Zhang,
509	W.: Effects of inorganic seed aerosols on the particulate products of aged 1,3,5-
510	trimethylbenzene secondary organic aerosol, Atmos. Environ., 152, 490-502, doi:
511	10.1016/j.atmosenv.2017.01.010, 2017.
512	Jaoui, M., Edney, E. O., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Surratt,
513	J. D., and Seinfeld, J. H.: Formation of secondary organic aerosol from irradiated
514	alpha-pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide,
515	J. Geophys. ResAtmos., 113, doi: 10.1029/2007jd009426, 2008.
516	Kang, E., Root, M. J., Toohey, D. W., and Brune, W. H.: Introducing the concept of
517	Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7, 5727-5744, doi:
518	10.5194/acp-7-5727-2007, 2007.
519	Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M.:
520	Secondary organic carbon and aerosol yields from the irradiations of isoprene and
521	alpha-pinene in the presence of NO_x and SO_2 , Environ. Sci. Technol., 40, 3807-
522	3812, doi: 10.1021/es052446r, 2006.
523	Krapf, M., El Haddad, I., Bruns, E. A., Molteni, U., Daellenbach, K. R., Prevot, A. S.
524	H., Baltensperger, U., and Dommen, J.: Labile peroxides in secondary organic
525	aerosol, Chem, 1, 603-616, doi: 10.1016/j.chempr.2016.09.007, 2016.
526	Kroll, J. H., Chan, A. W. H., Ng, N. L., Flagan, R. C., and Seinfeld, J. H.: Reactions of
527	semivolatile organics and their effects on secondary organic aerosol formation,
528	Environ. Sci. Technol., 41, 3545-3550, doi: 10.1021/es062059x, 2007.
529	Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson,
530	K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R.,
531	Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric
532	for describing the chemistry of atmospheric organic aerosol, Nature Chem., 3, 133-
533	139, doi: 10.1038/nchem.948, 2011.
534	Lauraguais, A., Coeur-Tourneur, C., Cassez, A., and Seydi, A.: Rate constant and
535	secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals
536	with syringol (2,6-dimethoxyphenol), Atmos. Environ., 55, 43-48, doi:
537	10.1016/j.atmosenv.2012.02.027, 2012.
538	Lauraguais, A., Bejan, I., Barnes, I., Wiesen, P., Coeur-Tourneur, C., and Cassez, A.:
539	Rate coefficients for the gas-phase reaction of chlorine atoms with a series of
540	methoxylated aromatic compounds, J. Phys. Chem. A, 118, 1777-1784, doi:

541 10.1021/jp4114877, 2014a.

542	Lauraguais, A., Coeur-Tourneur, C., Cassez, A., Deboudt, K., Fourmentin, M., and
543	Choel, M.: Atmospheric reactivity of hydroxyl radicals with guaiacol (2-
544	methoxyphenol), a biomass burning emitted compound: Secondary organic
545	aerosol formation and gas-phase oxidation products, Atmos. Environ., 86, 155-
546	163, doi: 10.1016/j.atmosenv.2013.11.074, 2014b.
547	Lauraguais, A., El Zein, A., Coeur, C., Obeid, E., Cassez, A., Rayez, MT., and Rayez,
548	JC.: Kinetic study of the gas-phase reactions of nitrate radicals with
549	methoxyphenol compounds: Experimental and theoretical approaches, J. Phys.
550	Chem. A, 120, 2691-2699, doi: 10.1021/acs.jpca.6b02729, 2016.
551	Lelieveld, J., Crutzen, P. J., Ramanathan, V., Andreae, M. O., Brenninkmeijer, C. A. M.,
552	Campos, T., Cass, G. R., Dickerson, R. R., Fischer, H., de Gouw, J. A., Hansel, A.,
553	Jefferson, A., Kley, D., de Laat, A. T. J., Lal, S., Lawrence, M. G., Lobert, J. M.,
554	Mayol-Bracero, O. L., Mitra, A. P., Novakov, T., Oltmans, S. J., Prather, K. A.,
555	Reiner, T., Rodhe, H., Scheeren, H. A., Sikka, D., and Williams, J.: The Indian
556	Ocean Experiment: Widespread air pollution from South and Southeast Asia,
557	Science, 291, 1031-1036, doi: 10.1126/science.1057103, 2001.
558	Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C.,
559	Zheng, B., Canonaco, F., Prevot, A. S. H., Chen, P., Zhang, H., Wallington, T. J.,
560	and He, K .: Wintertime aerosol chemistry and haze evolution in an extremely
561	polluted city of the North China Plain: Significant contribution from coal and
562	biomass combustion, Atmos. Chem. Phys., 17, 4751-4768, doi: 10.5194/acp-17-
563	4751-2017, 2017.
564	Lin, Y. H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Surratt, J. D.:
565	Investigating the influences of SO ₂ and NH ₃ levels on isoprene-derived secondary
566	organic aerosol formation using conditional sampling approaches, Atmos. Chem.
567	Phys., 13, 8457-8470, doi: 10.5194/acp-13-8457-2013, 2013.
568	Liu, J., Lin, P., Laskin, A., Laskin, J., Kathmann, S. M., Wise, M., Caylor, R., Imholt,
569	F., Selimovic, V., and Shilling, J. E.: Optical properties and aging of light-
570	absorbing secondary organic aerosol, Atmos. Chem. Phys., 16, 12815-12827, doi:
571	10.5194/acp-16-12815-2016, 2016a.
572	Liu, T., Wang, X., Hu, Q., Deng, W., Zhang, Y., Ding, X., Fu, X., Bernard, F., Zhang,
573	Z., Lu, S., He, Q., Bi, X., Chen, J., Sun, Y., Yu, J., Peng, P., Sheng, G., and Fu, J.:
574	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with
575	SO ₂ , Atmos. Chem. Phys., 16, 675-689, doi: 10.5194/acp-16-675-2016, 2016b.
576	Marais, E. A., Jacob, D. J., Turner, J. R., and Mickley, L. J.: Evidence of 1991-2013
577	decrease of biogenic secondary organic aerosol in response to SO ₂ emission
578	controls, Environ. Res. Lett., 12, doi: 10.1088/1748-9326/aa69c8, 2017.
579	Meade, L. E., Riva, M., Blomberg, M. Z., Brock, A. K., Qualters, E. M., Siejack, R. A.,
580	Ramakrishnan, K., Surratt, J. D., and Kautzman, K. E.: Seasonal variations of fine
581	particulate organosulfates derived from biogenic and anthropogenic hydrocarbons
582	in the mid-Atlantic United States, Atmos. Environ., 145, 405-414, doi:

583	10.1016/j.atmosenv.2016.09.028, 2016.
584	Mielke, L. H., Furgeson, A., and Osthoff, H. D.: Observation of CINO ₂ in a mid-
585	continental urban environment, Environ. Sci. Technol., 45, 8889-8896, doi:
586	10.1021/es201955u, 2011.
587	Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., and
588	Smith, K. R.: Woodsmoke health effects: A review, Inhal. Toxicol., 19, 67-106,
589	doi: 10.1080/08958370600985875, 2007.
590	Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J.,
591	McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F.,
592	Flagan, R. C., and Seinfeld, J. H.: Effect of NOx level on secondary organic aerosol
593	(SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7,
594	5159-5174, doi: 10.5194/acp-7-5159-2007, 2007.
595	Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and
596	Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from
597	aerosol mass spectra, Atmos. Chem. Phys., 11, 6465-6474, doi: 10.5194/acp-11-
598	6465-2011, 2011.
599	Nolte, C. G., Schauer, J. J., Cass, G. R., and Simoneit, B. R. T.: Highly polar organic
600	compounds present in wood smoke and in the ambient atmosphere, Environ. Sci.
601	Technol., 35, 1912-1919, doi: 10.1021/es001420r, 2001.
602	O'Neill, E. M., Kawam, A. Z., Van Ry, D. A., and Hinrichs, R. Z.: Ozonolysis of
603	surface-adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene
604	side-chain oxidation, Atmos. Chem. Phys., 14, 47-60, doi: 10.5194/acp-14-47-
605	2014, 2014.
606	Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.:
607	Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci.
608	Technol., 30, 2580-2585, doi: 10.1021/es950943+, 1996.
609	Ofner, J., Krueger, H. U., Grothe, H., Schmitt-Kopplin, P., Whitmore, K., and Zetzsch,
610	C.: Physico-chemical characterization of SOA derived from catechol and guaiacol
611	- a model substance for the aromatic fraction of atmospheric HULIS, Atmos. Chem.
612	Phys., 11, 1-15, doi: 10.5194/acp-11-1-2011, 2011.
613	Park, JH., Ivanov, A. V., and Molina, M. J.: Effect of relative humidity on OH uptake
614	by surfaces of atmospheric importance, J. Phys. Chem. A, 112, 6968-6977, doi:
615	10.1021/jp8012317, 2008.
616	Riva, M., Tomaz, So, Cui, T., Lin, Y. H., Perraudin, E., Gold, A., Stone, E. A., Villenave,
617	E., and Surratt, J. D.: Evidence for an unrecognized secondary anthropogenic
618	source of organosulfates and sulfonates: Gas-phase oxidation of polycyclic
619	aromatic hydrocarbons in the presence of sulfate aerosol, Environ. Sci. Technol.,
620	49, 6654–6664, doi: 10.1021/acs.est.5b00836, 2015.
621	Sarrafzadeh, M., Wildt, J., Pullinen, I., Springer, M., Kleist, E., Tillmann, R., Schmitt,
622	S. H., Wu, C., Mentel, T. F., Zhao, D., Hastie, D. R., and Kiendler-Scharr, A.:
623	Impact of NO _x and OH on secondary organic aerosol formation from beta-pinene
624	photooxidation, Atmos. Chem. Phys., 16, 11237-11248, doi: 10.5194/acp-16-

625	11237-2016, 2016.
626	Sato, K., Takami, A., Isozaki, T., Hikida, T., Shimono, A., and Imamura, T.: Mass
627	spectrometric study of secondary organic aerosol formed from the photo-oxidation
628	of aromatic hydrocarbons, Atmos. Environ., 44, 1080-1087, doi:
629	10.1016/j.atmosenv.2009.12.013, 2010.
630	Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of
631	emissions from air pollution sources. 3. C-1-C-29 organic compounds from
632	fireplace combustion of wood, Environ. Sci. Technol., 35, 1716-1728, doi:
633	10.1021/es001331e, 2001.
634	Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M.,
635	and Cass, G. R.: Lignin pyrolysis products, lignans, and resin acid as specific
636	tracers of plant classes in emissions from biomass combustion, Environ. Sci.
637	Technol., 27, 2533-2541, doi: 10.1021/es00048a034, 1993.
638	Sun, Y. L., Zhang, Q., Anastasio, C., and Sun, J.: Insights into secondary organic aerosol
639	formed via aqueous-phase reactions of phenolic compounds based on high
640	resolution mass spectrometry, Atmos. Chem. Phys., 10, 4809-4822, doi:
641	10.5194/acp-10-4809-2010, 2010.
642	Takekawa, H., Minoura, H., and Yamazaki, S.: Temperature dependence of secondary
643	organic aerosol formation by photo-oxidation of hydrocarbons, Atmos. Environ.,
644	37, 3413-3424, doi: 10.1016/s1352-2310(03)00359-5, 2003.
645	Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
646	Interpretation of organic components from Positive Matrix Factorization of
647	aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891-2918, doi:
648	10.5194/acp-9-2891-2009, 2009.
649	Weis, D. D., and Ewing, G. E.: Water content and morphology of sodium chloride
650	aerosol particles, J. Geophys. ResAtmos., 104, 21275-21285, doi:
651	10.1029/1999jd900286, 1999.
652	Xu, L., Middlebrook, A. M., Liao, J., de Gouw, J. A., Guo, H., Weber, R. J., Nenes, A.,
653	Lopez-Hilfiker, F. D., Lee, B. H., Thornton, J. A., Brock, C. A., Neuman, J. A.,
654	Nowak, J. B., Pollack, I. B., Welti, A., Graus, M., Warneke, C., and Ng, N. L.:
655	Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant
656	plumes during Southeast Nexus, J. Geophys. ResAtmos., 121, 11137-11153, doi:
657	10.1002/2016jd025156, 2016.
658	Yang, B., Zhang, H., Wang, Y., Zhang, P., Shu, J., Sun, W., and Ma, P.: Experimental
659	and theoretical studies on gas-phase reactions of NO ₃ radicals with three
660	methoxyphenols: Guaiacol, creosol, and syringol, Atmos. Environ., 125, 243-251,
661	doi: 10.1016/j.atmosenv.2015.11.028, 2016.
662	Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO ₂ oxidation in the
663	atmosphere: reactions with monoterpene ozonolysis intermediates and secondary
664	organic aerosol, Atmos. Chem. Phys., 18, 5549-5565, doi: 10.5194/acp-18-5549-
665	2018, 2018.
666	Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M., Chhabra, P.

- 667 S., Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J. D., Wennberg, P. O.,
- 668 Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from
- biomass burning intermediates: phenol and methoxyphenols, Atmos. Chem. Phys.,
- 670 13, 8019-8043, doi: 10.5194/acp-13-8019-2013, 2013.


671 **Table 1.** Experimental conditions and results for guaiacol photoxidation in the presence

672 NO_x.

Expt.	$[Guaiacol]_0(\mu gm^{\text{-}3})$	$\bigtriangleup[\text{Guaiacol}](\mu g \text{ m}^{\text{-3}})^a$	[NO _x] ₀ (ppb)	[NO] ₀ (ppb)	RH (%)	T (K)	$M_0 (\mu g \; m^{\text{-}3})^b$	Yield (%)
1	136.83	112.34	25.1	13.2	39	302	10.63	9.46
2	309.06	282.33	52.7	34.4	38	302	34.72	12.30
3	375.19	335.94	58.3	44.5	40	302	63.62	18.94
4	718.49	613.25	116.7	98.5	38	302	130.19	21.23
5	1321.25	1116.20	209.2	184.1	39	302	256.88	23.01
6	1470.66	1175.03	248	200	38	302	297.65	25.33
7	2197.36	1664.29	335	286	38	302	438.82	26.37

^a The consumed guaiacol concentration at the end of each experiment.

 b M₀ is the mass concentration of SOA.

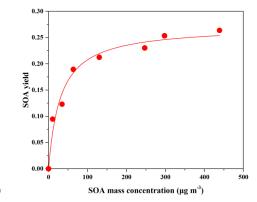
r.vhr.	Expt. [Guaiacol] ₀	∆[Guaiacol]	Seed	$[SO_2]_0$	[NO _x]0		ΕŊ	H	$N_{\rm S}$	Ds	C_{seed}	C _{sulfate}	\mathbf{S}_0	Sr	M_0	Yield	OS_{C}
	(µg m ⁻³)	$(\mu g m^{-3})^a$		(qdd)	(qdd)	(qdd)	(%)	(K)	(m ⁻³) ^b	(nm) ^c	$(\mu g m^{-3})^d$	$(\mu g m^{-3})^e$	$(\mu m^2 cm^{-3})^f$	$(\mu m^2 cm^{-3})^g$	$(\mu g m^{-3})^h$	(%)	
1	375.19	335.94	I	1	58.3	44.5	40	302	I	I	I	I	I	1.25×10^3	63.62	18.94	0.11
7	363.53	332.79	I	33	54.5	37.4	38	302	I	I	I	7.42	I	1.68×10^3	71.88	21.60	0.14
33	370.12	335.58	I	56	57.3	41.8	38	302	I	I	I	17.89	I	2.04×10^3	78.59	23.42	0.18
4	379.05	346.03	NaCl	I	58.8	40.7	39	302	10700	56	15.63	I	2.69×10^2	1.47×10^3	84.91	24.54	0.29
5	378.44	339.34	NaCl	30	57.4	41.9	38	302	11300	58	13.84	7.51	2.64×10^2	2.32×10^3	90.89	26.78	0.30
9	380.77	340.15	NaCl	54	60.1	46.1	39	301	11200	56	14.28	16.67	2.81×10^2	2.91×10^3	98.86	29.06	0.33
7	373.57	340.86	$(NH_4)_2SO_4$	I	58.3	42.6	39	302	10400	53	15.45	I	$2.75 imes 10^2$	$1.53 imes 10^3$	79.44	23.31	0.20
×	376.26	343.19	$(NH_4)_2SO_4$	33	56.8	38.9	38	302	10100	53	14.38	7.84	2.80×10^2	$2.57 imes 10^3$	84.35	24.58	0.22
6	381.33	341.01	$(NH_4)_2SO_4$	54	57.8	39.2	38	303	10700	51	14.90	17.25	2.82×10^2	$3.10 imes 10^3$	89.92	26.37	0.23

Table 2. Experimental conditions and results for guaiacol photoxidation in the presence of seed particles and SO₂.

675

29

^g The final surface area of aerosol particles (seed + organic aerosol), measured by SMPS.^h M₀ is the mass concentration of SOA.ⁱ OSc is the

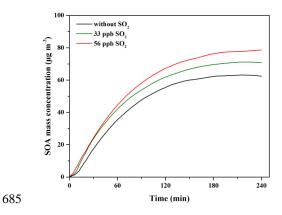

average oxidation state of carbon of SOA.

679

678

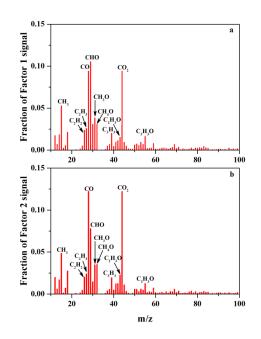
680

Figure 1. SOA yield as a function of SOA mass concentration (M₀) for guaiacol


682 photooxidation in the presence of NO_x at different guaiacol concentrations. The solid

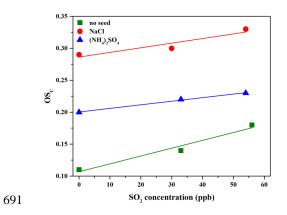
683 lines was fit to the experimental data using a one-product model. Values of α and K_{om,i}

used to generate the solid line were (0.27 ± 0.01) and (0.033 ± 0.008) in this work.


686 Figure 2. Time-dependent growth curves of SOA mass concentration for guaiacol

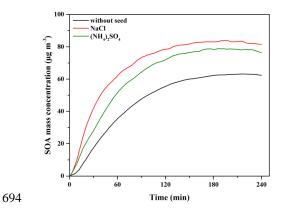
687 photooxidation at different SO₂ levels (Expts. 1–3 in Table 2).

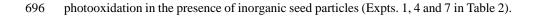
688

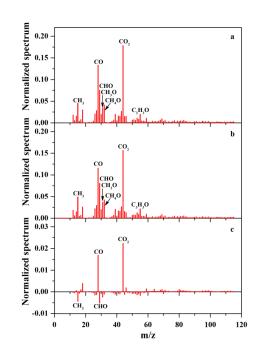


689 Figure 3. Mass spectra of Factor 1 (a) and Factor 2 (b) for the formed SOA identified

690 by applying PMF analysis to the AMS data.

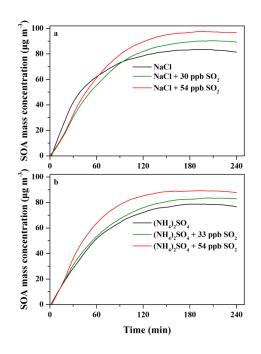



- 692 Figure 4. OS_C of SOA formed in the presence of various seed particles as a function of
- 693 SO₂ concentration.



695 Figure 5. Time-dependent growth curves of SOA mass concentration for guaiacol

698 Figure 6. Mass spectra of SOA with NaCl (a) and (NH₄)₂SO₄ (b) as seed particles


699 obtained by HR-ToF-AMS, as well as their difference mass spectrum (c) obtained by a

700 minus b.

697

702 Figure 7. Time-dependent growth curves of SOA mass concentration for guaiacol

703 photooxidation in the presence of SO₂ and inorganic seed particles (a, NaCl; b,

704 (NH₄)₂SO₄) (Expts. 4–9 in Table 2).

701